Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Juan Granifo, ${ }^{\text {a }}$ Moisés Vargas ${ }^{\text {a }}$ and Ricardo Baggio ${ }^{\text {b }}$ *

${ }^{\text {a D Departamento de Ciencias Químicas, Facultad }}$ de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Casilla 54-D,
Temuco, Chile, and ${ }^{\mathbf{b}}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina

Correspondence e-mail: jgranifo@ufro.cl

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in main residue
R factor $=0.054$
$w R$ factor $=0.193$
Data-to-parameter ratio $=10.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Bis(hexafluoroacetylacetonato- $\kappa^{2} O, O^{\prime}$)-bis[trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene- $\left.\kappa N^{4}\right]$ copper(II)

The title compound, trans- $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$, consists of monomeric units built up by a copper metal ion (lying on a center of symmetry) octahedrally coordinated by one oxygen-chelating hexafluoroacetylacetonate (hfac) group, a nitrogen-bound 1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4bpye) ligand, and their symmetry equivalents generated by the symmetry center at the metal site. The monomers interact with each other through $\pi-\pi$ bonding between pyridine rings, and are organized as chains running along [111 $]$. The stabilization of this architecture of chains is associated with a number of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds.

Comment

There are few structural studies dealing with 1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpye), and they show the ligand to adopt two binding modes to metal centers: monodentate, through the 4-pyridyl N atom, as in complexes with $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}$, $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Pb}^{\mathrm{II}}$ (Du et al., 2006; Seidel et al., 2001), and bridging bidentate, as in polymeric complexes with Ag^{1} (Rarig \& Zubieta, 2001) and Cu^{I} (Zhong \& Lu, 2005).

We present here a rather unusual copper complex, (I), containing both the 2,4-bpye ligand and the hfac anion (hfac is hexafluoroacetylacetonate); the only other known structure sharing both ligands is the Mn analog $\left[\mathrm{Mn}(\mathrm{hfac})_{2}(2,4-\right.$ bpye $\left.)_{2}\right]\left[\mathrm{Mn}(\mathrm{hfac})_{2}(\mathrm{MeOH})_{2}\right]$, (II), reported by Seidel et al. (2001).

Figure 1
The molecular structure of (I) with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level. Only the major disorder components of F atoms are shown. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Received 7 November 2006 Accepted 14 November 2006

The copper(II) cation in (I), lying on a $\overline{1}$ site, is octahedrally coordinated by two O, O^{\prime}-chelating hfac units, and two N bonded 4-pyridyl groups from two 2,4-bpye ligands (Fig. 1). In spite of the chelation, the geometry around copper is rather regular due to the open character of the 2,4-bpye bite. The equatorial bonds differ by less than 2%, while the axial $\mathrm{Cu} 1-$ O21 bond is only 12% longer (Table 1). The 2,4-bpye unit is basically planar (maximum deviation $0.057 \AA$ for atom N3). The symmetry center forces the extended units to bind at trans positions and parallel to each other, expanding outwards and giving the molecule a highly prolate elliptical appearance with major/minor principal axes of ~ 22.6 and $\sim 11.5 \AA$, respectively. The hfac CF_{3} units exhibit some rotational disorder (see Experimental).

In spite of the striking monomeric similarities, the Mn and Cu analogs pack in very different ways; while (II) forms a hydrogen-bonded supramolecular structure involving hydroxyl protons and non-bonded 2-pyridyl units, in (I), the N atoms of the free 2-pyridyl groups do not participate in any kind of hydrogen bonding and it is the pyridyl rings instead that provide the main packing forces through their displaced $\pi-\pi$ stacking interactions (shown in Fig. 2). This is characterized by a dihedral angle of $2.14(1)^{\circ}$ between the rings, a (nearly graphitic) interplanar separation of 3.46 (1) \AA and a centroid-to-centroid distance $\left[C g 1 \cdots C g 2^{\text {iii }} ; C g 1\right.$ and $C g 2$ are the centroids of the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ and $\mathrm{C} 9 / \mathrm{N} 10 / \mathrm{C} 11 / \mathrm{C} 12 /$ C13/C14 rings, respectively; symmetry code: (ii) $-x,-y, 2-z]$ of 3.917 (4) \AA, with a (mean) slippage angle of 28.1 (7) ${ }^{\circ}$ (Janiak, 2000). This interconnection between monomers leads to the formation of chains along [111] (Fig. 2). The interlinkage between chains seems to be quite feeble as it involves only weak contacts in which the disordered F atoms and the pyridyl H atoms take part.

Experimental

Ethanol was purchased from Merck and used without further purification. The compounds $\mathrm{Cu}(\mathrm{hfac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and 2,4-bpye were obtained from the Aldrich Chemical Company. For the synthesis of (I), an ethanol solution (1.50 ml) of $\mathrm{Cu}(\mathrm{hfac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.043 \mathrm{~g}, 0.087 \mathrm{mmol})$ was added to a solution of 2,4-bpye ($0.032 \mathrm{~g}, 0.174 \mathrm{mmol}$) in ethanol $(1.20 \mathrm{ml})$. The resulting dark-green solution was heated at 323 K for 10 min and then maintained at room temperature in a closed container. After a couple of days, crystals suitable for single-crystal X-ray diffraction were obtained (yield: 54.1%). The dark-green crystalline precipitate was washed with ethanol $(3 \times 2.5 \mathrm{ml})$ and dried in vacuo (m.p 473 K). Analysis calculated for $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{CuF}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$: C 48.50, H $2.63, \mathrm{~N} 6.65 \%$; found: C 48.65 , H 2.68 , N 6.56%.

Crystal data

```
\(\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]\)
\(M_{r}=842.10\)
Triclinic, \(P \overline{1}\)
\(a=9.1513\) (18) \(\AA\)
\(b=10.009\) (2) \(\AA\)
\(c=10.424\) (2) \(\AA\)
\(\alpha=74.23\) (3) \({ }^{\circ}\)
\(\beta=84.12(3)^{\circ}\)
\(\gamma=87.98(3)^{\circ}\)
```


Figure 2
Packing view showing the formation of chains. $\pi-\pi$ Contacts are shown as dashed lines. $C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ and $\mathrm{C} 9 / \mathrm{N} 10 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 14$ rings, respectively.

Data collection

Rigaku AFC-6 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.80, T_{\text {max }}=0.91$
4174 measured reflections
3219 independent reflections

1907 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=25.0^{\circ}$
3 standard reflections every 150 reflections intensity decay: 2%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.193$
$S=0.94$
3219 reflections
306 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0916 P)^{2}\right. \\
& +1.566 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 3$	$2.006(5)$	$\mathrm{Cu} 1-\mathrm{O} 21$	$2.257(4)$
$\mathrm{Cu} 1-\mathrm{O} 20$	$2.042(4)$		
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 20$	$89.50(18)$	$\mathrm{O} 20-\mathrm{Cu} 1-\mathrm{O} 21^{\mathrm{i}}$	$94.11(15)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 21^{\mathrm{i}}$	$87.49(16)$		

Symmetry code: (i) $-x+1,-y+1,-z+1$.
H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and allowed to ride with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Both $\mathrm{C}-\mathrm{CF}_{3}$ units presented rotational disorder, and each one was refined with a split model, as two groups having common C atoms of full occupancy, and two sets of F atoms with partial occupancies of $0.60 / 0.40$ (4) and $0.46 / 0.54$ (2), respectively. These parameters were allowed to vary in the early stages of refinement but were kept fixed at their convergence values at the end of the process. In order to preserve a meaningful geometry, similarity restraints were applied to the $\mathrm{C}-\mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ distances.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT

metal-organic papers

(Sheldrick, 2000); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2003).

The authors acknowledge the Universidad de La Frontera (proyecto DIUFRO 120416) for financial support. We also acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge license to use the CSD (Allen, 2002) and Professor Judith Howard for the donation of a Rigaku AFC6S four-circle diffractometer.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Du, M., Li, C.-P. \& Zhao, X.-J. (2006). CrystEngComm, 8, 552-562.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rarig, R. S. Jr \& Zubieta, J. (2001). Inorg. Chim. Acta, 319, 235-239.
Seidel, S. R., Tabellion, F. M., Arif, A. M. \& Stang, P. J. (2001). Isr. J. Chem. 41, 149-161.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhong, K.-L. \& Lu, W.-J.. (2005). Acta. Cryst. E61, m1416-1m1418.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

